

Course Specifications

Course Title:	Introduction to Real Analysis	
Course Code:	30112101-3	
Program:	BSc. Mathematics	
Department: Mathematics		
College:	Al-Leith University College	
Institution:	Umm Al-Qura University	

Table of Contents

A. Course Identification	.3
6. Mode of Instruction (mark all that apply)	. 3
B. Course Objectives and Learning Outcomes	.4
1. Course Description	.4
2. Course Main Objective	.4
3. Course Learning Outcomes	.4
C. Course Content	.4
D. Teaching and Assessment	.5
1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessmen Methods	ıt . 5
2. Assessment Tasks for Students	. 5
E. Student Academic Counseling and Support	.5
F. Learning Resources and Facilities	.6
1.Learning Resources	. 6
2. Facilities Required	. 6
G. Course Quality Evaluation	.6
H. Specification Approval Data	.6

A. Course Identification

1. Credit hours: 3 hours		
2. Course type a. University College Department Others b. Required		
3. Level/year at which this course is offered: Level 4 / 2 nd year		
4. Pre-requisites for this course (if any): Calculus(2) 30112501-4		
5. Co-requisites for this course (if any): None		

6. Mode of Instruction (mark all that apply)

No	Mode of Instruction	Contact Hours	Percentage
1	Traditional classroom	3 Hours / Week	100%
2	Blended	0	0 %
3	E-learning	0	0 %
4	Correspondence	0	0 %
5	Other	0	0 %

7. Actual Learning Hours (based on academic semester)

No	Activity	Learning Hours			
Conta	Contact Hours				
1	Lecture	(3 hours) x (15 weeks)			
2	Laboratory/Studio	0			
3	Tutorial	0			
4	Others (specify)	8 hours (quiz, exam)			
	Total	53 hours			
Other Learning Hours*					
1	Study	(2 hours) x (15 weeks)			
2	Assignments	(1 hours) x (15 weeks)			
3	Library	(2 hours) x (15 weeks)			
4	Projects/Research Essays/Theses	(1 hour) x (15 weeks)			
5	Others (specify)	5 hours workgroup			
	Total	95 hours			

* The length of time that a learner takes to complete learning activities that lead to achievement of course learning outcomes, such as study time, homework assignments, projects, preparing presentations, library times

B. Course Objectives and Learning Outcomes

1. Course Description

This course is intended to familiarize the students with the basic concepts, principles and methods of real analysis and its applications. It will cover algebraic and order properties of the real numbers, the least upper bound axiom, Archimedean property and its applications. Sequences and series of numbers will then be discussed, and theorems presented to analyze their convergence properties.

2. Course Main Objective

Students will demonstrate the ability to use rigorous mathematical thought processes in the following areas: real numbers, limits of functions, sequences and series.

3. Course Learning Outcomes

CLOs Al		
1	Knowledge:	
1.1	Outline basic properties of the real number system	K1
1.2	Define supremum and infimum of a nonempty set	K3
1.3	Recall concept of limits	K4
1.4	Identify main properties of sequences	K1
1.5	Recognize different convergence tests of numerical series	K5
2	Skills :	
2.1	Prove unaccountability of the real number system	S 1
2.2	Interpret limit of a function in terms of limits of sequences	S 6
2.3	Apply Cauchy criterion of Series	S2
3	Competence:	
3.1	Appraise the real number system as a "complete ordered field"	C5
3.2	Use graphical information and symbolic expression simultaneously in	C2
	solving problems.	
3.3	Justify the choice of different steps in problem resolution procedure.	C3

C. Course Content

No	List of Topics	Contact Hours
	Real numbers:	
	• The Algebraic properties of R.	
1	• Applications.	9
1	• The Order properties of R.	
	• The absolute Value	
	• Proof by Induction.	
C	The completeness property of R	6
2	The Archimedean principle in R	
	Real Sequences:	
2	• Limit of a sequence	9
5	Applications	
	Convergent sequence	
4	 Monotone and Bounded sequences. 	
	• Applications.	9
	 Subsequences and Cauchy Sequences. 	
	Bolzano-Weierstrass Theorem	

Numerical Series:			
	•	Definition, convergent numerical series.	
5	•	Prove Cauchy's convergence criteria.	12
	•	Nature of convergence of numerical series using the	
		comparison test, integral test, ratio test and Raabe's test	
		Total	45

D. Teaching and Assessment

1. Alignment of Course Learning Outcomes with Teaching Strategies and Assessment Methods

Code	Course Learning Outcomes	Teaching Strategies	Assessment Methods
1.0	Knowledge		
1.1	Outline basic properties of the real number system		E
1.2	Define supremum and infimum of a nonempty set	Lectures Tutorials	Exams Tutorials
1.3	Recall concept of limits	Discussion	Quizzes
1.4	Identify main properties of sequences	Quizzes	group project
1.5	Recognize different convergence tests of numerical series		
2.0	Skills		
2.1	Prove unaccountability of the real number system	Tutorials	Exams Tutorials
2.2	Interpret limit of a function in terms of limits of sequencesDiscussion QuizzesQuizzesgroup project		Quizzes group project
2.3	Apply Cauchy criterion of Series		
3.0	Competence		
3.1	Appraise the real number system as a "complete ordered field"		
3.2	Use graphical information and symbolic expression simultaneously in solving problems.	Tutorials Discussion Quizzes	Exams (Midterm and Final). Homework
3.3	Justify the choice of different steps in problem resolution procedure.		

2. Assessment Tasks for Students

#	Assessment task*	Week Due	Percentage of Total Assessment Score
1	Midterm Test (1)	6 th week	20%
2	Midterm Test (2)	12 th week	20%
3	Homework and Quizzes	During the semester	10%
4	Final Examination	End of semester	50%

*Assessment task (i.e., written test, oral test, oral presentation, group project, essay, etc.)

E. Student Academic Counseling and Support

Arrangements for availability of faculty and teaching staff for individual student consultations and academic advice:

Each group of students is assigned to a faculty member where he or she will provide academic advising. All faculty members are required to be in their offices outside teaching hours. Each

faculty member allocates at least 4 hours per week to give academic advice and to answer to the questions of students about concepts studied during the lectures.

F. Learning Resources and Facilities 1. Learning Resources

Required Textbooks	Bartle and Sherbert: Introduction to Real Analysis, 4th edition, (2011). ISBN: 978-0-471-43331- 6		
Essential References Materials	An introduction to classical real analysis, (Karl, R. Stromberg)Real and Complex analysis, (Walter Rudin)		
Electronic Materials	http://ebookee.org/		
Other Learning Materials Microsoft Word			

2. Facilities Required

Item	Resources
Accommodation (Classrooms, laboratories, demonstration rooms/labs, etc.)	Large classrooms that can accommodate more than 50 students.
Technology Resources (AV, data show, Smart Board, software, etc.)	Data Show.
Other Resources (Specify, e.g. if specific laboratory equipment is required, list requirements or attach a list)	None.

G. Course Quality Evaluation

Evaluation Areas/Issues Evaluators		Evaluation Methods
Effectiveness of teaching and assessment.	Students	Direct
Quality of learning resources.	Students	Direct
Extent of achievement of course learning outcomes.	Faculty member	Direct

H. Specification Approval Data

Council / Committee	Council of the Mathematics Department	The mathematical sciences (college of applied sciences) and the mathematics (Al Leith university college) department's first meeting of the coordinative committee
Reference No.	4101050782	First meeting
Date	Sunday, 17 November 2019	Thursday, 17 October 2019

Department Head

Dr. Ali Hassani

